Imaging Jupiter’s radiation belts down to 127 MHz with LOFAR
J. N. Girard
(1)
,
P. Zarka
(2)
,
C. Tasse
(3)
,
S. Hess
(4)
,
I. de Pater
,
D. Santos-Costa
,
Q. Nenon
,
A. Sicard
(4)
,
S. Bourdarie
(4)
,
J. Anderson
,
A. Asgekar
(5)
,
M. E. Bell
(6)
,
I. van Bemmel
(5)
,
M. J. Bentum
(5)
,
G. Bernardi
(7)
,
P. Best
(8)
,
A. Bonafede
(9)
,
F. Breitling
(10)
,
R. P. Breton
(11)
,
J. W. Broderick
(6)
,
W. N. Brouw
,
M. Brüggen
(9)
,
B. Ciardi
(12)
,
Stéphane Corbel
(1)
,
A. Corstanje
(13)
,
F. de Gasperin
(14)
,
E. de Geus
(5)
,
A. Deller
(5)
,
S. Duscha
(5)
,
J. Eislöffel
(15)
,
H. Falcke
(13)
,
W. Frieswijk
(5)
,
M. A. Garrett
(16)
,
Jean-Mathias Griessmeier
(17, 18)
,
A. W. Gunst
(5)
,
J. W. T. Hessels
(19)
,
M. Hoeft
(15)
,
J. Hörandel
(13)
,
M. Iacobelli
(20)
,
E. Juette
(21)
,
V. I. Kondratiev
(5)
,
M. Kuniyoshi
(22)
,
G. Kuper
(5)
,
J. van Leeuwen
(19, 5)
,
M. Loose
,
P. Maat
,
G. Mann
(10)
,
S. Markoff
(19)
,
R. Mcfadden
,
D. Mckay-Bukowski
(23)
,
J. Moldon
,
H. Munk
,
A. Nelles
(13)
,
M. J. Norden
(5)
,
E. Orru
(5)
,
H. Paas
(24)
,
M. Pandey-Pommier
(25)
,
R. Pizzo
(5)
,
A. G. Polatidis
(5)
,
W. Reich
(22)
,
H. Röttgering
(16)
,
A. Rowlinson
(26)
,
D. Schwarz
(27)
,
O. Smirnov
(28)
,
M. Steinmetz
(29)
,
J. Swinbank
(19)
,
Michel Tagger
(18)
,
S. Thoudam
(13)
,
M. C. Toribio
(30)
,
R. Vermeulen
(5)
,
C. Vocks
(10)
,
R. J. van Weeren
(31)
,
R. A. M. J. Wijers
(19)
,
O. Wucknitz
(22)
1
AIM (UMR7158 / UMR_E_9005 / UM_112) -
Astrophysique Interprétation Modélisation
2 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique
3 GEPI - Galaxies, Etoiles, Physique, Instrumentation
4 ONERA - The French Aerospace Lab [Toulouse]
5 ASTRON - Netherlands Institute for Radio Astronomy
6 University of Southampton
7 LPNHE (UMR_7585) - Laboratoire de Physique Nucléaire et de Hautes Énergies
8 ROE - Royal Observatory Edinburgh
9 Jacobs University = Constructor University [Bremen]
10 AIP - Leibniz-Institut für Astrophysik Potsdam
11 JBCA - Jodrell Bank Centre for Astrophysics
12 Max Planck Institute for Astrophysics
13 Radboud University [Nijmegen]
14 Hamburger Sternwarte/Hamburg Observatory
15 TLS - Thüringer Landessternwarte Tautenburg
16 Leiden Observatory [Leiden]
17 USN - Unité Scientifique de la Station de Nançay
18 LPC2E - Laboratoire de Physique et Chimie de l'Environnement et de l'Espace
19 AI PANNEKOEK - Astronomical Institute Anton Pannekoek
20 DPMMS - Department of Pure Mathematics and Mathematical Statistics
21 RUB - Ruhr University Bochum = Ruhr-Universität Bochum
22 MPIFR - Max-Planck-Institut für Radioastronomie
23 University of Oulu
24 University of Groningen [Groningen]
25 CRAL - Centre de Recherche Astrophysique de Lyon
26 CSIRO Astronomy and Space Science
27 Universität Bielefeld
28 Rhodes University, Grahamstown
29 DSMZ - Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures
30 Universiteit Leiden = Leiden University
31 CfA - Harvard-Smithsonian Center for Astrophysics
2 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique
3 GEPI - Galaxies, Etoiles, Physique, Instrumentation
4 ONERA - The French Aerospace Lab [Toulouse]
5 ASTRON - Netherlands Institute for Radio Astronomy
6 University of Southampton
7 LPNHE (UMR_7585) - Laboratoire de Physique Nucléaire et de Hautes Énergies
8 ROE - Royal Observatory Edinburgh
9 Jacobs University = Constructor University [Bremen]
10 AIP - Leibniz-Institut für Astrophysik Potsdam
11 JBCA - Jodrell Bank Centre for Astrophysics
12 Max Planck Institute for Astrophysics
13 Radboud University [Nijmegen]
14 Hamburger Sternwarte/Hamburg Observatory
15 TLS - Thüringer Landessternwarte Tautenburg
16 Leiden Observatory [Leiden]
17 USN - Unité Scientifique de la Station de Nançay
18 LPC2E - Laboratoire de Physique et Chimie de l'Environnement et de l'Espace
19 AI PANNEKOEK - Astronomical Institute Anton Pannekoek
20 DPMMS - Department of Pure Mathematics and Mathematical Statistics
21 RUB - Ruhr University Bochum = Ruhr-Universität Bochum
22 MPIFR - Max-Planck-Institut für Radioastronomie
23 University of Oulu
24 University of Groningen [Groningen]
25 CRAL - Centre de Recherche Astrophysique de Lyon
26 CSIRO Astronomy and Space Science
27 Universität Bielefeld
28 Rhodes University, Grahamstown
29 DSMZ - Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures
30 Universiteit Leiden = Leiden University
31 CfA - Harvard-Smithsonian Center for Astrophysics
P. Zarka
- Fonction : Auteur
- PersonId : 755767
- ORCID : 0000-0003-1672-9878
- IdRef : 034944648
S. Hess
- Fonction : Auteur
- PersonId : 758130
- IdHAL : seb-hess
- ORCID : 0000-0001-5753-0991
- IdRef : 131208063
I. de Pater
- Fonction : Auteur
- PersonId : 759351
- ORCID : 0000-0002-4278-3168
D. Santos-Costa
- Fonction : Auteur
Q. Nenon
- Fonction : Auteur
A. Sicard
- Fonction : Auteur
- PersonId : 1419118
- IdHAL : angelica-sicard
- ORCID : 0000-0001-7810-1432
- IdRef : 162543026
J. Anderson
- Fonction : Auteur
G. Bernardi
- Fonction : Auteur
- PersonId : 755163
- ORCID : 0000-0002-0916-7443
A. Bonafede
- Fonction : Auteur
- PersonId : 766668
- ORCID : 0000-0002-5068-4581
W. N. Brouw
- Fonction : Auteur
F. de Gasperin
- Fonction : Auteur
- PersonId : 766669
- ORCID : 0000-0003-4439-2627
J. Eislöffel
- Fonction : Auteur
- PersonId : 761407
- ORCID : 0000-0001-6496-0252
Jean-Mathias Griessmeier
- Fonction : Auteur
- PersonId : 737206
- IdHAL : jean-mathias-griessmeier
- ORCID : 0000-0003-3362-7996
- IdRef : 235780871
M. Iacobelli
- Fonction : Auteur
- PersonId : 774611
- ORCID : 0000-0001-9118-2097
M. Loose
- Fonction : Auteur
P. Maat
- Fonction : Auteur
G. Mann
- Fonction : Auteur
- PersonId : 760232
- ORCID : 0000-0002-4452-3028
R. Mcfadden
- Fonction : Auteur
J. Moldon
- Fonction : Auteur
H. Munk
- Fonction : Auteur
R. Pizzo
- Fonction : Auteur
- PersonId : 766670
- ORCID : 0000-0003-2816-9492
H. Röttgering
- Fonction : Auteur
- PersonId : 766671
- ORCID : 0000-0001-8887-2257
- IdRef : 223410934
Michel Tagger
- Fonction : Auteur
- PersonId : 4538
- IdHAL : michel-tagger
- ORCID : 0000-0003-2962-3220
- IdRef : 097156310
Résumé
Context. With the limited amount of in situ particle data available for the innermost region of Jupiter’s magnetosphere, Earth-based observations of the giant planets synchrotron emission remain the sole method today of scrutinizing the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet. Radio observations ultimately provide key information about the origin and control parameters of the harsh radiation environment.
Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR. At a frequency as low as 127 MHz, the radiation from electrons with energies of ~1–30 MeV are expected, for the first time, to be measured and mapped over a broad region of Jupiter’s inner magnetosphere.
Methods. Measurements consist of interferometric visibilities taken during a single 10-hour rotation of the Jovian system. These visibilities were processed in a custom pipeline developed for planetary observations, combining flagging, calibration, wide-field imaging, direction-dependent calibration, and specific visibility correction for planetary targets. We produced spectral image cubes of Jupiter’s radiation belts at the various angular, temporal, and spectral resolutions from which flux densities were measured.
Results. The first resolved images of Jupiter’s radiation belts at 127–172 MHz are obtained with a noise level ~20–25 mJy/beam, along with total integrated flux densities. They are compared with previous observations at higher frequencies. A greater extent of the synchrotron emission source (≥4 RJ) is measured in the LOFAR range, which is the signature – as at higher frequencies – of the superposition of a “pancake” and an isotropic electron distribution. Asymmetry of east-west emission peaks is measured, as well as the longitudinal dependence of the radial distance of the belts, and the presence of a hot spot at λIII = 230° ± 25°. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the Jovian synchrotron spectrum.
Conclusions. LOFAR proves to be a powerful and flexible planetary imager. In the case of Jupiter, observations at 127 MHz depict the distribution of ~1–30 MeV energy electrons up to ~4–5 planetary radii. The similarities of the observations at 127 MHz with those at higher frequencies reinforce the conclusion that the magnetic field morphology primarily shapes the brightness distribution features of Jupiter’s synchrotron emission, as well as how the radiating electrons are likely radially and latitudinally distributed inside about 2 planetary radii. Nonetheless, the detection of an emission region that extends to larger distances than at higher frequencies, combined with the overall lower flux density, yields new information on Jupiter’s electron distribution, and this information may ultimately shed light on the origin and mode of transport of these particles.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...