Deciphering mineralogical changes and carbonation development during hydration and ageing of a consolidated ternary blended cement paste - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue International Union of Crystallography journal Année : 2018

Deciphering mineralogical changes and carbonation development during hydration and ageing of a consolidated ternary blended cement paste

Résumé

To understand the main properties of cement, a ubiquitous material, a sound description of its chemistry and mineralogy, including its reactivity in aggressive environments and its mechanical properties, is vital. In particular, the porosity distribution and associated sample carbonation, both of which affect cement's properties and durability, should be quantified accurately, and their kinetics and mechanisms of formation known both in detail and in situ. However, traditional methods of cement mineralogy analysis (e.g. chemical mapping) involve sample preparation (e.g. slicing) that can be destructive and/or expose cement to the atmosphere, leading to preparation artefacts (e.g. dehydration). In addition, the kinetics of mineralogical development during hydration, and associated porosity development, cannot be examined. To circumvent these issues, X-ray diffraction computed tomography (XRD-CT) has been used. This allowed the mineralogy of ternary blended cement composed of clinker, fly ash and blast furnace slag to be deciphered. Consistent with previous results obtained for both powdered samples and dilute systems, it was possible, using a consolidated cement paste (with a water-to-solid ratio akin to that used in civil engineering), to determine that the mineralogy consists of alite (only detected in the in situ hydration experiment), calcite, calcium silicate hydrates (C-S-H), ettringite, mullite, portlandite, and an amorphous fraction of unreacted slag and fly ash. Mineralogical evolution during the first hydration steps indicated fast ferrite reactivity. Insights were also gained into how the cement porosity evolves over time and into associated spatially and time-resolved carbonation mechanisms. It was observed that macroporosity developed in less than 30 h of hydration, with pore sizes reaching about 100-150 mm in width. Carbonation was not observed for this time scale, but was found to affect the first 100 mm of cement located around macropores in a sample cured for six months. Regarding this carbonation, the only mineral detected was calcite.
Fichier principal
Vignette du fichier
ro5009.pdf (1.33 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

insu-01766385 , version 1 (14-12-2018)

Identifiants

Citer

Francis Claret, Sylvain Grangeon, Annick Loschetter, Christophe Tournassat, Wout de Nolf, et al.. Deciphering mineralogical changes and carbonation development during hydration and ageing of a consolidated ternary blended cement paste. International Union of Crystallography journal, 2018, 5 (2), pp.150 - 157. ⟨10.1107/S205225251701836X⟩. ⟨insu-01766385⟩
193 Consultations
133 Téléchargements

Altmetric

Partager

More