Titanite: A potential solidus barometer for granitic magma systems
Résumé
Constraining crystallization pressure and thus intrusion depth of granites in various geodynamic settings remains challenging, yet important to further our understanding of magma system and crustal evolution. We propose that titanite, which is a common accessory in metaluminous and weakly peraluminous granites, can be used as a barometer if it crystallized in magmatic, near-solidus conditions and in equilibrium with amphibole, plagioclase, K-feldspar, quartz, biotite, and magnetite ± ilmenite. Titanite Al2O3 increases with pressure (P) according to: P (in MPa) = 101.66 × Al2O3 in titanite (in wt%) + 59.013 (R2 = 0.83) with estimated uncertainties of ~±60 to ~±100 MPa for crystallization between ~150 and 400 MPa. We highlight that the current calibration dataset is limited, and that systematic experimental studies are needed to rigorously quantify the relation. The most important use of this empirical barometer will be for rocks in which amphibole is present but significantly altered, or in combination with amphibole barometry, as titanite can be easily dated by LA-ICP-MS.
Origine | Publication financée par une institution |
---|
Loading...