Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue Atmospheric Chemistry and Physics Discussions Année : 2022

Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates

Résumé

A novel method of comparison between an atmospheric model and satellite probabilistic estimates of relative humidity (RH) in the tropical atmosphere is presented. The method is developed to assess the Météo-France numerical weather forecasting model ARPEGE using probability density functions (PDF) of RH estimated from the SAPHIR microwave sounder. The satellite RH reference is derived by aggregating footprint-scale probabilistic RH to match the spatial and temporal resolution of ARPEGE over the April-May-June 2018 period. The probabilistic comparison is discussed with respect to a classical deterministic comparison confronting each model RH value to the reference average and using a set confidence interval. The study first documents the significant spatial and temporal variability of the reference distribution spread and shape. It warrants the need for a finer assessment at the individual case level to characterise specific situations beyond the classical bulk comparison using determinist “best” reference estimates. The probabilistic comparison allows for a more contrasted assessment than the deterministic one. Specifically, it reveals cases where the ARPEGE simulated values falling within the deterministic confidence range actually correspond to extreme departures in the reference distribution.
Fichier principal
Vignette du fichier
acp-2021-617.pdf (1.71 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03364623 , version 1 (04-10-2021)
insu-03364623 , version 2 (23-03-2022)

Licence

Identifiants

  • HAL Id : insu-03364623 , version 1

Citer

Chloe Radice, Hélène Brogniez, Pierre-Emmanuel Kirstetter, Philippe Chambon. Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates. Atmospheric Chemistry and Physics Discussions, 2022, pp.(Under Review). ⟨insu-03364623v1⟩
259 Consultations
70 Téléchargements

Partager

More