Seismic Velocity Recovery in the Subsurface: Transient Damage and Groundwater Drainage Following the 2015 Gorkha Earthquake, Nepal - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Journal of Geophysical Research : Solid Earth Year : 2022

Seismic Velocity Recovery in the Subsurface: Transient Damage and Groundwater Drainage Following the 2015 Gorkha Earthquake, Nepal

Luc Illien
Christoph Sens-Schönfelder
Christoff Andermann
Odin Marc
  • Function : Author
  • PersonId : 1294062
  • IdHAL : odin-marc
Kristen L. Cook
  • Function : Author
Lok B. Adhikari
  • Function : Author
Niels Hovius
  • Function : Author

Abstract

Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behavior has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations δv retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behavior we inferred from a previously calibrated groundwater model. The fitting of the δv data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behavior, interpreted as an enhanced permeability in the shallow subsurface, lasts for ∼6 months and is shorter than the damage relaxation (∼1 yr). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.
Fichier principal
Vignette du fichier
JGR Solid Earth - 2022 - Illien - Seismic Velocity Recovery in the Subsurface Transient Damage and Groundwater Drainage.pdf (3.42 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

insu-03619990 , version 1 (25-03-2022)

Licence

Identifiers

Cite

Luc Illien, Christoph Sens-Schönfelder, Christoff Andermann, Odin Marc, Kristen L. Cook, et al.. Seismic Velocity Recovery in the Subsurface: Transient Damage and Groundwater Drainage Following the 2015 Gorkha Earthquake, Nepal. Journal of Geophysical Research : Solid Earth, 2022, 127, ⟨10.1029/2021JB023402⟩. ⟨insu-03619990⟩
22 View
35 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More