Characterizing unknown systematics in large scale structure surveys - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS Année : 2014

Characterizing unknown systematics in large scale structure surveys

Nishant Agarwal
  • Fonction : Auteur
Shirley Ho
  • Fonction : Auteur
Adam D. Myers
  • Fonction : Auteur
Hee-Jong Seo
  • Fonction : Auteur
Ashley J. Ross
  • Fonction : Auteur
Neta Bahcall
  • Fonction : Auteur
Jonathan Brinkmann
  • Fonction : Auteur
Daniel J. Eisenstein
  • Fonction : Auteur
Demitri Muna
  • Fonction : Auteur
Nathalie Palanque-Delabrouille
  • Fonction : Auteur
Isabelle Pâris
  • Fonction : Auteur
  • PersonId : 973398
Donald P. Schneider
  • Fonction : Auteur
Alina Streblyanska
  • Fonction : Auteur
Benjamin A. Weaver
  • Fonction : Auteur
Christophe Yèche
  • Fonction : Auteur

Résumé

Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

Dates et versions

insu-03645674 , version 1 (19-04-2022)

Identifiants

Citer

Nishant Agarwal, Shirley Ho, Adam D. Myers, Hee-Jong Seo, Ashley J. Ross, et al.. Characterizing unknown systematics in large scale structure surveys. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, 2014, ⟨10.1088/1475-7516/2014/04/007⟩. ⟨insu-03645674⟩
7 Consultations
0 Téléchargements

Altmetric

Partager

More