Characterization of Two 2 mm detected Optically Obscured Dusty Star-forming Galaxies
Résumé
The 2 mm Mapping Obscuration to Reionization with ALMA (MORA) Survey was designed to detect high-redshift (z ≳ 4), massive, dusty star-forming galaxies (DSFGs). Here we present two likely high-redshift sources, identified in the survey, whose physical characteristics are consistent with a class of optical/near-infrared (OIR)-invisible DSFGs found elsewhere in the literature. We first perform a rigorous analysis of all available photometric data to fit spectral energy distributions and estimate redshifts before deriving physical properties based on our findings. Our results suggest the two galaxies, called MORA-5 and MORA-9, represent two extremes of the "OIR-dark" class of DSFGs. MORA-5 ( ${z}_{\mathrm{phot}}={4.3}_{-1.3}^{+1.5}$ ) is a significantly more active starburst with a star formation rate (SFR) of ${830}_{-190}^{+340}$ M ⊙ yr-1 compared to MORA-9 ( ${z}_{\mathrm{phot}}={4.3}_{-1.0}^{+1.3}$ ), whose SFR is a modest ${200}_{-60}^{+250}$ M ⊙ yr-1. Based on the stellar masses (M ⋆ ≍ 1010-11 M ⊙), space density (n ~ (5 ± 2) × 10-6 Mpc-3, which incorporates two other spectroscopically confirmed OIR-dark DSFGs in the MORA sample at z = 4.6 and z = 5.9), and gas depletion timescales (<1 Gyr) of these sources, we find evidence supporting the theory that OIR-dark DSFGs are the progenitors of recently discovered 3 < z < 4 massive quiescent galaxies.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|