Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Climate of the Past Year : 2016

Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

April N. Abbott
  • Function : Author
Brian A. Haley
  • Function : Author
Martin Frank
  • Function : Author

Abstract

Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ∼ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.
Fichier principal
Vignette du fichier
cp-12-837-2016.pdf (872.53 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03684950 , version 1 (02-06-2022)

Licence

Attribution

Identifiers

Cite

April N. Abbott, Brian A. Haley, Aradhna K. Tripati, Martin Frank. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes. Climate of the Past, 2016, 12, pp.837-847. ⟨10.5194/cp-12-837-2016⟩. ⟨insu-03684950⟩
19 View
8 Download

Altmetric

Share

Gmail Facebook X LinkedIn More