Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles The Astrophysical Journal Year : 2017

Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging

Tomas Stolker
  • Function : Author
Mike Sitko
  • Function : Author
Carsten Dominik
Rens Waters
  • Function : Author
Michiel Min
  • Function : Author
Sebastian Perez
  • Function : Author
Julien Milli
  • Function : Author
Antonio Garufi
Jozua de Boer
  • Function : Author
Christian Ginski
  • Function : Author
Stefan Kraus
  • Function : Author
Henning Avenhaus
  • Function : Author


We present multi-epoch Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE) observations of the protoplanetary disk around HD 135344B (SAO 206462). The J-band scattered light imagery reveal, with high spatial resolution (∼41 mas, 6.4 au), the disk surface beyond ∼20 au. Temporal variations are identified in the azimuthal brightness distributions of all epochs, presumably related to the asymmetrically shading dust distribution in the inner disk. These shadows manifest themselves as narrow lanes, cast by localized density enhancements, and broader features which possibly trace the larger scale dynamics of the inner disk. We acquired visible and near-infrared photometry which shows variations up to 10% in the JHK bands, possibly correlated with the presence of the shadows. Analysis of archival Very Large Telescope Interferometer/Precision Integrated-Optics Near-infrared Imaging ExpeRiment (VLTI/PIONIER) H-band visibilities constrain the orientation of the inner disk to I=18\buildrel{\circ}\over{.} {2}-4.1+3.4 and {PA}=57\buildrel{\circ}\over{.} 3+/- 5\buildrel{\circ}\over{.} 7, consistent with an alignment with the outer disk or a minor disk warp of several degrees. The latter scenario could explain the broad, quasi-stationary shadowing in north-northwest direction in case the inclination of the outer disk is slightly larger. The correlation between the shadowing and the near-infrared excess is quantified with a grid of radiative transfer models. The variability of the scattered light contrast requires extended variations in the inner disk atmosphere (H/r≲ 0.2). Possible mechanisms that may cause asymmetric variations in the optical depth ({{Δ }}τ ≲ 1) through the atmosphere of the inner disk include turbulent fluctuations, planetesimal collisions, or a dusty disk wind, possibly enhanced by a minor disk warp. A fine temporal sampling is required to follow day-to-day changes of the shadow patterns which may be a face-on variant of the UX Orionis phenomenon.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 087.C-0702(A,B), 087.C-0458(B,C), 087.C-0703(B), 088.C-0670(B), 088.D-0185(A), 088.C-0763(D), 089.C-0211(A), 091.C-0570(A), 095.C-0273(A), 097.C-0885(A), 097.C-0702(A), and 297.C-5023(A).

Dates and versions

insu-03692471 , version 1 (09-06-2022)



Tomas Stolker, Mike Sitko, Bernard Lazareff, Myriam Benisty, Carsten Dominik, et al.. Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging. The Astrophysical Journal, 2017, 849, ⟨10.3847/1538-4357/aa886a⟩. ⟨insu-03692471⟩
12 View
0 Download



Gmail Facebook X LinkedIn More