Extreme Lake-Effect Snow from a GPM Microwave Imager Perspective: Observational Analysis and Precipitation Retrieval Evaluation - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Journal of Atmospheric and Oceanic Technology Year : 2021

Extreme Lake-Effect Snow from a GPM Microwave Imager Perspective: Observational Analysis and Precipitation Retrieval Evaluation

Lisa Milani
  • Function : Author
Mark S. Kulie
  • Function : Author
Daniele Casella
  • Function : Author
Pierre E. Kirstetter
  • Function : Author
Giulia Panegrossi
  • Function : Author
Veljko Petkovic
  • Function : Author
Sarah E. Ringerud
  • Function : Author
Paolo Sanò
  • Function : Author
Nai-Yu Wang
  • Function : Author
Yalei You
  • Function : Author
Gail Skofronick-Jackson
  • Function : Author

Abstract

This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF's overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance.
Fichier principal
Vignette du fichier
[15200426 - Journal of Atmospheric and Oceanic Technology] Extreme Lake-Effect Snow from a GPM Microwave Imager Perspective Observational Analysis and Precipitation Retrieval Evaluation.pdf (3.47 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03726959 , version 1 (19-07-2022)

Licence

Attribution

Identifiers

Cite

Lisa Milani, Mark S. Kulie, Daniele Casella, Pierre E. Kirstetter, Giulia Panegrossi, et al.. Extreme Lake-Effect Snow from a GPM Microwave Imager Perspective: Observational Analysis and Precipitation Retrieval Evaluation. Journal of Atmospheric and Oceanic Technology, 2021, 38, pp.293-311. ⟨10.1175/JTECH-D-20-0064.1⟩. ⟨insu-03726959⟩
33 View
10 Download

Altmetric

Share

Gmail Facebook X LinkedIn More