Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles The Astrophysical Journal Year : 2022

Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum

Xiaosheng Zhao
  • Function : Author
Yi Mao
  • Function : Author

Abstract

The first measurements of the 21 cm brightness temperature power spectrum from the epoch of reionization will very likely be achieved in the near future by radio interferometric array experiments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA). Standard MCMC analyses use an explicit likelihood approximation to infer the reionization parameters from the 21 cm power spectrum. In this paper, we present a new Bayesian inference of the reionization parameters where the likelihood is implicitly defined through forward simulations using density estimation likelihood-free inference (DELFI). Realistic effects, including thermal noise and foreground avoidance, are also applied to the mock observations from the HERA and SKA. We demonstrate that this method recovers accurate posterior distributions for the reionization parameters, and it outperforms the standard MCMC analysis in terms of the location and size of credible parameter regions. With the minute-level processing time once the network is trained, this technique is a promising approach for the scientific interpretation of future 21 cm power spectrum observation data. Our code 21cmDELFI-PS is publicly available at this link (https://github.com/Xiaosheng-Zhao/21cmDELFI).
Fichier principal
Vignette du fichier
Zhao_2022_ApJ_933_236.pdf (937.99 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03748246 , version 1 (09-08-2022)

Licence

Attribution

Identifiers

Cite

Xiaosheng Zhao, Yi Mao, Benjamin D. Wandelt. Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum. The Astrophysical Journal, 2022, 933, ⟨10.3847/1538-4357/ac778e⟩. ⟨insu-03748246⟩
8 View
19 Download

Altmetric

Share

Gmail Facebook X LinkedIn More