Microlenses for astrophotonic instruments manufactured by ultrafast-laser assisted etching
Abstract
The performance of astrophotonic instruments is determined by various factors including the quality of optical surfaces and the precise alignment of components. As instruments become more complex and compact, the manufacture and assembly of components is increasingly challenging. We propose that a laser-based glass microfabrication technique known as ultrafast-laser assisted etching (ULAE) is ideally suited to the manufacture of both existing and novel components for astrophotonic instruments. To demonstrate this potential, we will present ULAE manufactured microlenses with integrated passive alignment features for efficient optical fiber coupling. A full physical and optical characterization of the micro-lenses is given. These components have applications in fiber-fed multi-object spectrographs.