Significance of Diapycnal Mixing Within the Atlantic Meridional Overturning Circulation
Résumé
Diapycnal mixing shapes the distribution of climatically important tracers, such as heat and carbon, as these are carried by dense water masses in the ocean interior. Here, we analyze a suite of observation-based estimates of diapycnal mixing to assess its role within the Atlantic Meridional Overturning Circulation (AMOC). The rate of water mass transformation in the Atlantic Ocean's interior shows that there is a robust buoyancy increase in the North Atlantic Deep Water (NADW, neutral density γn ≃ 27.6-28.15), with a diapycnal circulation of 0.5-8 Sv between 48°N and 32°S in the Atlantic Ocean. Moreover, tracers within the southward-flowing NADW may undergo a substantial diapycnal transfer, equivalent to a vertical displacement of hundreds of meters in the vertical. This result, confirmed with a zonally averaged numerical model of the AMOC, indicates that mixing can alter where tracers upwell in the Southern Ocean, ultimately affecting their global pathways and ventilation timescales. These results point to the need for a realistic mixing representation in climate models in order to understand and credibly project the ongoing climate change.
Domaines
Planète et Univers [physics]
Fichier principal
AGU Advances - 2023 - Cimoli - Significance of Diapycnal Mixing Within the Atlantic Meridional Overturning Circulation.pdf (3.37 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|