Earth's volatile depletion trend is consistent with a high-energy Moon-forming impact
Résumé
The abundance of volatile elements in the silicate Earth relative to primitive chondrites provides an important constraint on the thermochemical evolution of the planet. However, an overabundance of indium relative to elements with similar nebular condensation temperatures is a source of debate. Here we use ab initio molecular dynamics simulations to explore the vaporization behavior of indium from pyrolite melt at conditions of the early magma ocean just after the Moon-forming impact. We then compare this to the vaporization behavior of other minor elements. When considering the volatility of the elements from the magma ocean in the absence of the solar nebula gas, we find that there is no overabundance of indium. On the contrary, there is a slight deficit in the abundance of indium, which is consistent with its moderately siderophile nature. Thus, we propose that a high-energy Moon-forming impact may have had a more significant contribution to volatile depletion than previously believed.
Domaines
Planète et Univers [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|