Sequential development of shear zones in a Metamorphic Core Complex: cause and consequences in the Menderes Massif (Western Turkey)
Résumé
During the Cenozoic, the Menderes Massif (western Turkey) records several tectonic and thermal events from subduction to collision, then back-arc extension. But the detailed timing of the succession of different P-T regimes and deformation until today remains debated. To address this, we targeted the main shear zones, providing for the first time a full picture of the 40Ar/39Ar system across the massif. This approach is combined with Tmax, and P-T estimates tied to kinematic-structural data. Extensive sampling along the large top-S Selimiye shear zone allows constraining the deformation at least between 44 and 33 Ma. This shear zone acted as a thrust and was active under HT-MP (530 - 590 °C and 8.5 - 10 kbar). Conversely, the top-S South Menderes Detachment System is associated with a younging of 40Ar/39Ar ages related to exhumation and strain localization during the Late Oligo-Miocene in the Central Menderes Massif. The Bozdağ top-S shear zone then allowed the exhumation of the Bayındır nappe at ~ 21 Ma from high-temperature metamorphic conditions (590 °C). Based on these new elements, we propose for the first time a detailed scenario of the Menderes Massif evolution from the Late Cretaceous to the Present. We finally discuss why the Menderes Massif belongs currently to the regions with the highest geothermal potential in the world. We propose that geothermal activity here is not of magmatic origin but rather associated with active extensional tectonics (detachments) related to the Aegean slab dynamics (i.e., slab retreat and tearing).