Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue Journal of Advances in Modeling Earth Systems Année : 2023

Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies

Résumé

Gridded sea surface height (SSH) maps estimated from satellite altimetry are widely used for estimating surface ocean geostrophic currents. Satellite altimeters observe SSH along one-dimensional tracks widely spaced in space and time, making accurately reconstructing the two-dimensional (2D) SSH field challenging. Traditionally, SSH is mapped using optimal interpolation (OI). However, OI artificially smooths the SSH field leading to high mapping errors in regions with rapidly-evolving mesoscale features such as western boundary currents. Motivated by the dynamical relation between SSH and sea surface temperature (SST) and the notion that even the chaotic evolution of mesoscale ocean turbulence may contain repeating patterns, we outline a deep learning (DL) approach where a neural network is trained to reconstruct 2D SSH by synthesizing altimetry and SST observations. In the Gulf Stream Extension region, dominated by mesoscale variability, our DL method substantially improves the SSH reconstruction compared to existing methods. Our SSH map has 17% lower root-mean-square error and resolves spatial scales 30% smaller than OI compared against independent altimeter observations. Surface geostrophic currents calculated from our map are closer to surface drifter observations and appear qualitatively more realistic, with stronger currents, a clearer separation between the Gulf Stream and neighboring eddies, and the appearance of smaller coherent eddies missed by other methods. Our map yields significant re-estimations of important dynamical quantities such as eddy kinetic energy, vorticity, and strain rate. Applying our DL method to produce a global SSH product may provide a more accurate and higher resolution product for studying mesoscale ocean turbulence.
Fichier principal
Vignette du fichier
J Adv Model Earth Syst - 2023 - Martin.pdf (4.54 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-04195519 , version 1 (04-09-2023)

Licence

Identifiants

Citer

Scott A. Martin, Georgy E. Manucharyan, Patrice Klein. Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies. Journal of Advances in Modeling Earth Systems, 2023, 15, ⟨10.1029/2022MS003589⟩. ⟨insu-04195519⟩
29 Consultations
32 Téléchargements

Altmetric

Partager

More