Need for Updates to the Venus International Reference Model (VIRA) - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

Need for Updates to the Venus International Reference Model (VIRA)

Résumé

The Venus International Reference Model (VIRA) was developed after the results from the data collected by Venera 13 and 14 as well as the Pioneer Venus Orbiter and Multi-Probe missions became available (Kliore et al. 1985). The model included (i) Atmospheric circulation, (ii) Atmospheric composition, (iii) Thermal structure, (iv) Neutral upper atmosphere, (v) Particulate matter, (vi) Solar and thermal radiation, and (vii) Venus ionosphere. Since then, there have been some updates proposed for the thermal structure after the Venera 11, 13, 14, Venera 15 and 16 orbiters, VeGa 1 and VeGa 2 lander and balloon data (Moroz and Zasova 1997; Limaye 2016; Limaye et al. 2017; Limaye et al. 2018a). Updates to the composition of the upper atmosphere were proposed from Solar Occultation Infrared Radiometer on Venus Express (Vandaele et al. 2016). Venus Express has provided some results on the ionosphere but no specific model updates have been proposed. One of the key recent results is that the troposphere of Venus does not appear to be well-mixed in the two major constituents - carbon dioxide and nitrogen. The nitrogen abundance appears to vary from 5% between 60-100 km (Peplowski et al. 2020) to about 2.6 % at 22 km (Oyama et al. 1980), and hypothesized to be zero near the surface (Lebonnois and Schubert 2017). The resulting vertical gradient in the atmospheric molecular weight affects the precise altitude/pressure level of all atmospheric measurements, remote as well as in-situ. There are some new results on the Venus cloud properties from Venus Monitoring Camera (Markiewicz et al. 2014; Wilson et al. 2015; Limaye et al. 2018b; Marcq et al. 2018; Markiewicz et al. 2018; Petrova 2018; Titov et al. 2018; Marcq et al. 2020) and questions about trace species indicating chemical disequilibrium are arising (Florenskii et al. 1978; Florenskij et al. 1978; Donahue and Hodges 1993; Bains et al. 2020; Greaves et al. 2020; Mogul et al. 2020). In addition, questions about the nature and identity of the absorbers of incident solar radiation persist with hypotheses for biological contributions (Limaye et al. 2018c; Seager et al. 2020). For these reasons, it would be useful to initiate a process to update the VIRA model components. References Bains W., Petkowski J. J., Seager S., Ranjan S., Sousa-Silva C., Rimmer P. B., Zhan Z., Greaves J. S., and Richards A. M. S. (2020) Phosphine on Venus Cannot be Explained by Conventional Processes. pp arXiv:2009.06499. Donahue T. M., and Hodges R. R. (1993) Venus methane and water. Geophysical Research Letters, 20: 591-594 Florenskii C. P., Volkov V. P., and Nikolaeva O. V. (1978) A geochemical model of the Venus troposphere. Icarus, 33: 537.10.1016/0019-1035(78)90189-6 Florenskij K. P., Volkov V. P., and Nikolaeva O. V. (1978) The geochemical process of daily variations of the cloud cover of Venus. Geokhimiia, 3: Greaves J. S., Richards A. M. S., Bains W., Rimmer P. B., Sagawa H., Clements D. L., Seager S., Petkowski J. J., Sousa-Silva C., Ranjan S., Drabek-Maunder E., Fraser H. J., Cartwright A., Mueller-Wodarg I., Zhan Z., Friberg P., Coulson I., Lee E. l., and Hoge J. (2020) Phosphine gas in the cloud decks of Venus. Nature Astronomy.10.1038/s41550-020-1174-4 Kliore A. J., Moroz V. I., and Keating G. M. (1985) The Venus International Reference Atmosphere. Advances in Space Research, 5: Lebonnois S., and Schubert G. (2017) The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2. Nature Geoscience, 10: 473-477.10.1038/ngeo2971 Limaye S. (2016) Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira, 41st COSPAR Scientific Assembly, http://adsabs.harvard.edu/abs/2016cosp...41E1166L Limaye S., Zasova L., and Bocanegra Bahamon T. (2018a) Updating the Venus Atmospheric Structure for VIRA.https://ui.adsabs.harvard.edu/abs/2018cosp...42E2017L Limaye S. S., Lebonnois S., Mahieux A., Pätzold M., Bougher S., Bruinsma S., Chamberlain S., Clancy R. T., Gérard J.-C., Gilli G., Grassi D., Haus R., Herrmann M., Imamura T., Kohler E., Krause P., Migliorini A., Montmessin F., Pere C., Persson M., Piccialli A., Rengel M., Rodin A., Sandor B., Sornig M., Svedhem H., Tellmann S., Tanga P., Vandaele A. C., Widemann T., Wilson C. F., Müller-Wodarg I., and Zasova L. (2017) The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles✰. Icarus, 294: 124.10.1016/j.icarus.2017.04.020 Limaye S. S., Grassi D., Mahieux A., Migliorini A., Tellmann S., and Titov D. (2018b) Venus Atmospheric Thermal Structure and Radiative Balance. Space Science Reviews, 214: 102.10.1007/s11214-018-0525-2 Limaye S. S., Mogul R., Smith D. J., Ansari A. H., Słowik G., and Vaishampayan P. (2018c) Venus' Spectral Signatures and the Potential for Life in the Clouds. Astrobiology, 18: 1181-1198.10.1089/ast.2017.1783 Marcq E., Mills F. P., Parkinson C. D., and Vandaele A. C. (2018) Composition and Chemistry of the Neutral Atmosphere of Venus. Space Science Reviews, 214: 10 Marcq E., Lea Jessup K., Baggio L., Encrenaz T., Lee Y. J., Montmessin F., Belyaev D., Korablev O., and Bertaux J.-L. (2020) Climatology of SO2 and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset. Icarus, 335: 113368.https://doi.org/10.1016/j.icarus.2019.07.002 Markiewicz W. J., Petrova E., Shalygina O., Almeida M., Titov D. V., Limaye S. S., Ignatiev N., Roatsch T., and Matz K. D. (2014) Glory on Venus cloud tops and the unknown UV absorber. Icarus, 234: 200-203 Markiewicz W. J., Petrova E. V., and Shalygina O. S. (2018) Aerosol properties in the upper clouds of Venus from glory observations by the Venus Monitoring Camera (Venus Express mission). Icarus, 299: 272-293.https://doi.org/10.1016/j.icarus.2017.08.011 Mogul R., Limaye S. S., Way M. J., and Cordova J. A., Jr. (2020) Is Phosphine in the Mass Spectra from Venus' Clouds? , pp arXiv:2009.12758. Moroz V. I., and Zasova L. V. (1997) VIRA-2: a review of inputs for updating the Venus International Reference Atmosphere. Advances in Space Research, 19: 1191-1201 Oyama V. I., Carle G. C., Woeller F., Pollack J. B., Reynolds R. T., and Craig R. A. (1980) Pioneer Venus gas chromatography of the lower atmosphere of Venus. Journal of Geophysical Research, 85: 7891.10.1029/JA085iA13p07891 Peplowski P. N., Lawrence D. J., and Wilson J. T. (2020) Chemically distinct regions of Venus's atmosphere revealed by measured N2 concentrations. Nature Astronomy.10.1038/s41550-020-1079-2 Petrova E. V. (2018) Glory on Venus and selection among the unknown UV absorbers. Icarus, 306: 163-170.https://doi.org/10.1016/j.icarus.2018.02.016 Seager S., Petkowski J. J., Gao P., Bains W., Bryan N. C., Ranjan S., and Greaves J. (2020) The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. Astrobiology.10.1089/ast.2020.2244 Titov D. V., Ignatiev N. I., McGouldrick K., Wilquet V., and Wilson C. F. (2018) Clouds and Hazes of Venus. Space Science Reviews, 214: 126.10.1007/s11214-018-0552-z Vandaele A. C., Chamberlain S., Mahieux A., Ristic B., Robert S., Thomas I., Trompet L., Wilquet V., Belyaev D., Fedorova A., Korablev O., and Bertaux J. L. (2016) Contribution from SOIR/VEX to the updated Venus International Reference Atmosphere (VIRA). Advances in Space Research, 57: 443-458.https://doi.org/10.1016/j.asr.2015.08.012 Wilson C. F., Marcq E., Markiewicz W. J., Montmessin F., Fedorova A., Wilquet V., Petrova E. V., Ignatiev N. I., Shalygina O. S., Maattanen A. E., McGouldrick K. M., Hashimoto G. L., Imamura T., Rossi L., Luginin M., Oschlisniok J., Haus R., Parkinson C. D., Titov D. V., Zasova L. V., and Limaye S. S. (2015) The clouds of Venus - an overview of Venus Express results. European Planetary Science Congress 2015, held 27 September - 2 October, 2015 in Nantes, France, Online at http://meetingorganizer.copernicus.org/EPSC2015, id.EPSC2015-762, 10:
Fichier non déposé

Dates et versions

insu-04486757 , version 1 (02-03-2024)

Identifiants

Citer

Sanjay Limaye, Ludmila Zasova, Emmanuel Marcq, Oleg Korablev, Colin Wilson, et al.. Need for Updates to the Venus International Reference Model (VIRA). 43rd COSPAR Scientific Assembly 2021, Jan 2021, sydney, Australia. pp.Abstract B4.4-0009-21 (oral), id.428. ⟨insu-04486757⟩
37 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More