Spatial distribution of polycyclic aromatic hydrocarbons in sediment deposits in a Seine estuary tributary by hyperspectral imaging
Résumé
Water bodies allow the storage of sediments from their catchment areas, including sediments containing persistent contaminants. This study used visible and near-infrared hyperspectral imaging to characterize the composition of sediment deposits collected in Martot Pond (France) and to reconstruct the volume of polycyclic aromatic hydrocarbon (PAH) contaminated sediments in the pond. Additionally, combining this method with polychlorinated biphenyl (PCB) analysis enhanced the age model associated with these sediments. To achieve this, indicators of oxides and chlorophyll a (and its derivatives) were employed to correlate various sediment cores, and to propose a sedimentary filling mode for the pond. Furthermore, one sedimentary unit, which appears homogeneous but of variable size within the pond, exhibited repetitive alternations associated with tidal cycles due to a defect in the Martot dam, corresponding to 34 +/‑ 3 days. A chemometric approach was used to model PAHs with near-infrared hyperspectral imaging data (validation determination coefficient of 0.85, Root Mean Squared Error of Prediction of 1.64 mg/kg). This model was then applied to other cores, coupled with the sedimentary filling mode in the pond, allowing the reconstruction of the volume of PAH contamination. Thus, this study demonstrates that hyperspectral imaging is a powerful tool for estimating various contaminants in sediments: not only is it much faster than conventional chromatographic methods, it also provides a more detailed understanding of a sample, and even of a site through the correlation of multiple core samples.