Article Dans Une Revue Astronomy & Astrophysics - A&A Année : 2024

Exploring the impact of a decelerating bar on transforming bulge orbits into disc-like orbits

Chengdong Li
Arnaud Siebert
Benoit Famaey
Rimpei Chiba
  • Fonction : Auteur
Georges Kordopatis
Rodrigo Ibata
Vanessa Hill
  • Fonction : Auteur

Résumé

Aims. The most metal-poor tail of the Milky Way ([Fe/H] ≤ −2.5) contains a population of stars on very prograde planar orbits, whose origins and evolution remain puzzling. One possible scenario is that they are shepherded by the bar from the inner Galaxy, where many of the old and low-metallicity stars in the Galaxy are located. Methods. To investigate this scenario, we used test-particle simulations with an axisymmetric background potential plus a central bar model. The test particles were generated by an extended distribution function (EDF) model based on the observational constraints of bulge stars. Results. According to the simulation results, a bar with a constant pattern speed is not efficient in terms of helping bring stars from the bulge to the solar vicinity. In contrast, when the model includes a decelerating bar, some bulge stars can gain rotation and move outwards as they are trapped in the bar’s resonance regions. The resulting distribution of shepherded stars heavily depends on the present-day azimuthal angle between the bar and the Sun. The majority of the low-metallicity bulge stars driven outwards are distributed in the first and fourth quadrants of the Galaxy with respect to the Sun and about 10% of them are within 6 kpc from us. Conclusions. Our experiments indicate that the decelerating bar perturbation can be a contributing mechanism that may partially explain the presence of the most metal-poor stars with prograde planar orbits in the Solar neighbourhood, but it is unlikely to be the only one.
Fichier principal
Vignette du fichier
aa49742-24.pdf (7.06 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

insu-04726532 , version 1 (08-10-2024)

Licence

Identifiants

Citer

Chengdong Li, Zhen Yuan, Giacomo Monari, Nicolas Martin, Arnaud Siebert, et al.. Exploring the impact of a decelerating bar on transforming bulge orbits into disc-like orbits. Astronomy & Astrophysics - A&A, 2024, 690, pp.A26. ⟨10.1051/0004-6361/202449742⟩. ⟨insu-04726532⟩
19 Consultations
15 Téléchargements

Altmetric

Partager

More