High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin
Résumé
An increasing number of field examples in mountain belts show that the formation of passive margins during extreme continent thinning may occur under conditions of high to very high thermal gradient beneath a thin cover of syn-rift sediments. Orogenic belts resulting from the tectonic inversion of distal margins and regions of exhumed continental mantle may exhibit high-temperature, low-pressure (HT-LP) metamorphism and coeval syn-extensional, ductile deformation. Recent studies have shown that the northern flank of the Pyrenean belt, especially the North Pyrenean Zone, is one of the best examples of such inverted hot, passive margin. In this study, we provide a map of HT-LP metamorphism based on a data set of more than 100 peak-temperature estimates obtained using Raman spectroscopy of the carbona-ceous material (RSCM). This data set is completed by previous PT (pressure and temperature) estimates based on mineral assemblages, and new 40 Ar– 39 Ar (amphibole, micas) and U–Pb (titanite) ages from metamorphic and magmatic rocks of the North Pyrenean Zone. The implications on the geological evolution of the Cretaceous Pyrenean paleomar-gins are discussed. Ages range mainly from 110 to 90 Ma, and no westward or eastward propagation of the metamor-phism and magmatism can be clearly identified. In contrast, the new data reveal a progressive propagation of the thermal anomaly from the base to the surface of the continental crust. Focusing on the key localities of the Mauléon basin, Arguenos–Moncaup, Lherz, Boucheville and the Bas-Agly, we analyze the thermal conditions prevailing during the Cre-taceous crustal thinning. The results are synthetized into a series of three regional thematic maps and into two detailed maps of the Arguenos–Moncaup and Lherz areas. The results indicate a first-order control of the thermal gradient by the intensity of crustal thinning. The highest grades of metamor-phism are intimately associated with the areas where subcon-tinental mantle rocks have been unroofed or exhumed.
Domaines
Sciences de la TerreOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...