Experimental Constraints on the Formation of Silicic Magmas - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Elements Year : 2016

Experimental Constraints on the Formation of Silicic Magmas

Abstract

A rich history of experimental petrology has revealed the paths by which silicic igneous rocks follow mineral–melt equilibria during differentiation. Subdividing these rocks by ‘molar Al versus Ca + Na + K’ illustrates first-order differences in mineralogy and gives insight into formation mechanisms. Peraluminous magmas, formed by partial melting of sediments, largely owe their attributes and compositions to melting reactions in the protoliths, whereas most metaluminous felsic magmas record both continental and mantle inputs. Peralkaline rhyolites are mainly derived from either protracted crystallization or small degrees of partial melting of basalt, with only a marginal crustal contribution. Most silicic magmas hold 3–7 wt% H2Omelt, which is inversely correlated with pre-eruptive temperature (700 °C to >950 °C) but unrelated to their reduced/oxidized state.
Fichier principal
Vignette du fichier
BScaillet-Elements-2016.pdf (615.23 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

insu-01310808 , version 1 (26-03-2021)

Identifiers

Cite

Bruno Scaillet, Francois Holtz, Michel Pichavant. Experimental Constraints on the Formation of Silicic Magmas. Elements, 2016, 12 (2), pp.109-114. ⟨10.2113/gselements.12.2.109⟩. ⟨insu-01310808⟩
1459 View
165 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More