Effect of anorthite on granite phase relations: Experimental data and models
Résumé
New experimental data on the effect of anorthite (An) on liquidus phase equilibria in the system Qz–Ab–Or are presented. The data were obtained for 5 wt% An added to variable Qz/Ab/Or compositions at 300 MPa and under H2O-saturated conditions. Crystal–liquid equilibria were determined for 13 synthetic glass compositions made from gels in experiments performed between 660 and 750 °C in cold-seal pressure vessels. Forward and reversal experiments were systematically conducted on each composition to demonstrate equilibrium. A total of 51 charges was examined. Three crystalline phases, quartz, alkali feldspar and plagioclase appear on the H2O-saturated liquidus surface. The determined minimum liquidus 5 wt% An “piercing” point (39% Qz, 33% Ab, 28% Or) is shifted away from the Ab apex toward the Qz–Or sideline when compared with the An-free 300 MPa H2O-saturated minimum. This shift is of the same type as that observed at 100 MPa in the same system and at 200 MPa in a rhyolitic system. The new experimental results are used to test both empirical and thermodynamic models for silicic magmas. Empirical models reproduce reasonably well the new experimental data, although more sophisticated calculations schemes appear to be required to improve their accuracy. The new experimental results in the haplogranodiorite system are not well reproduced with the model of Holland and Powell (2001), mainly because plagioclase stability appears greatly enhanced in the model. Rhyolite-MELTS satisfactorily reproduces the Qz-, Pl- and Af-liquid phase equilibria, but model H2O solubilities are significantly lower and crystallization temperatures higher than in experiments.
Domaines
Planète et Univers [physics]Origine | Publication financée par une institution |
---|
Loading...