Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion Island and the Observatoire de Haute Provence - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Atmospheric Measurement Techniques Year : 2023

Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion Island and the Observatoire de Haute Provence

Mathieu Ratynski
  • Function : Correspondent author
  • PersonId : 1186093

Connectez-vous pour contacter l'auteur
Sergey Khaykin
Alain Hauchecorne
  • Function : Author
  • PersonId : 914935
Philippe Keckhut
  • Function : Author
  • PersonId : 918122

Abstract

The European Space Agency's (ESA) Aeolus satellite mission is the first Doppler wind lidar in space, operating in orbit for more than three years since August 2018 and providing global wind profiling throughout the entire troposphere and the lower stratosphere. The Observatoire de Haute Provence (OHP) in southern France and the Observatoire de Physique de l'Atmosphère à La Réunion (OPAR) are equipped with ground-based Doppler Rayleigh-Mie lidars, which operate on similar principles to the Aeolus lidar, and are among essential instruments within ESA Aeolus Cal/Val program. This study presents the validation results of the L2B Rayleigh-clear HLOS winds from September 2018 to January 2022. The point-by-point validation exercise relies on a series of validation campaigns at both observatories: AboVE (Aeolus Validation Experiment) that were held in September 2019 and June 2021 at OPAR, and in January 2019 and December 2021 at OHP. The campaigns involved time-coordinated lidar acquisitions and radiosonde ascents collocated with the nearest Aeolus overpasses. During AboVE-2, Aeolus was operated in a campaign mode with an extended range bin setting allowing inter-comparisons up to 28.7 km. We show that this setting suffers from larger random error in the uppermost bins, exceeding the estimated error, due to lack of backscatter at high altitudes. To evaluate the long-term evolution in Aeolus wind product quality, twice-daily routine Météo-France radiosondes and regular lidar observations were used at both sites. This study evaluates the long-term evolution of the satellite performance along with punctual collocation analyses. On average, we find a systematic error (bias) of-0.92 ms-1 and-0.79 ms-1 and a random error (scaled MAD) of 6.49 ms-1 and 5.37 ms-1 for lidar and radiosondes, respectively.
Fichier principal
Vignette du fichier
amt-16-997-2023.pdf (3.1 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Licence : CC BY - Attribution

Dates and versions

insu-03850451 , version 1 (13-11-2022)
insu-03850451 , version 2 (28-02-2023)

Licence

Attribution

Identifiers

Cite

Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, et al.. Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion Island and the Observatoire de Haute Provence. Atmospheric Measurement Techniques, 2023, 16 (4), pp.997-1016. ⟨10.5194/amt-16-997-2023⟩. ⟨insu-03850451v2⟩
229 View
46 Download

Altmetric

Share

Gmail Facebook X LinkedIn More