Response time correction of slow-response sensor data by deconvolution of the growth-law equation - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Geoscientific Instrumentation, Methods and Data Systems Année : 2022

Response time correction of slow-response sensor data by deconvolution of the growth-law equation

Knut Ola Dølven
Juha Vierinen
  • Fonction : Auteur
Jack Triest
  • Fonction : Auteur
Bénédicte Ferré

Résumé

Abstract. Accurate high-resolution measurements are essential to improve our understanding of environmental processes. Several chemical sensors relying on membrane separation extraction techniques have slow response times due to a dependence on equilibrium partitioning across the membrane separating the measured medium (i.e., a measuring chamber) and the medium of interest (i.e., a solvent). We present a new technique for deconvolving slow-sensor-response signals using statistical inverse theory; applying a weighted linear least-squares estimator with the growth law as a measurement model. The solution is regularized using model sparsity, assuming changes in the measured quantity occur with a certain time step, which can be selected based on domain-specific knowledge or L-curve analysis. The advantage of this method is that it (1) models error propagation, providing an explicit uncertainty estimate of the response-time-corrected signal; (2) enables evaluation of the solution self consistency; and (3) only requires instrument accuracy, response time, and data as input parameters. Functionality of the technique is demonstrated using simulated, laboratory, and field measurements. In the field experiment, the coefficient of determination (R2) of a slow-response methane sensor in comparison with an alternative fast-response sensor significantly improved from 0.18 to 0.91 after signal deconvolution. This shows how the proposed method can open up a considerably wider set of applications for sensors and methods suffering from slow response times due to a reliance on the efficacy of diffusion processes.
Fichier principal
Vignette du fichier
gi-11-293-2022.pdf (4.61 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03860454 , version 1 (18-11-2022)

Licence

Paternité

Identifiants

Citer

Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, Bénédicte Ferré. Response time correction of slow-response sensor data by deconvolution of the growth-law equation. Geoscientific Instrumentation, Methods and Data Systems, 2022, 11 (2), pp.293-306. ⟨10.5194/gi-11-293-2022⟩. ⟨insu-03860454⟩
23 Consultations
14 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More