Persistent homology in cosmic shear. II. A tomographic analysis of DES-Y1 - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Astronomy and Astrophysics - A&A Year : 2022

Persistent homology in cosmic shear. II. A tomographic analysis of DES-Y1

Sven Heydenreich
  • Function : Author
Benjamin Brück
  • Function : Author
Pierre Burger
  • Function : Author
Joachim Harnois-Déraps
  • Function : Author
Sandra Unruh
  • Function : Author
Tiago Castro
  • Function : Author
Klaus Dolag
  • Function : Author

Abstract

We demonstrate how to use persistent homology for cosmological parameter inference in a tomographic cosmic shear survey. We obtain the first cosmological parameter constraints from persistent homology by applying our method to the first-year data of the Dark Energy Survey. To obtain these constraints, we analyse the topological structure of the matter distribution by extracting persistence diagrams from signal-to-noise maps of aperture masses. This presents a natural extension to the widely used peak count statistics. Extracting the persistence diagrams from the cosmo-SLICS, a suite of N-body simulations with variable cosmological parameters, we interpolate the signal using Gaussian processes and marginalise over the most relevant systematic effects, including intrinsic alignments and baryonic effects. For the structure growth parameter, we find S8 = 0.747−0.031+0.025, which is in full agreement with other late-time probes. We also constrain the intrinsic alignment parameter to A = 1.54 ± 0.52, which constitutes a detection of the intrinsic alignment effect at almost 3σ.
Fichier principal
Vignette du fichier
aa43868-22.pdf (11.01 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03863227 , version 1 (21-11-2022)

Licence

Attribution

Identifiers

Cite

Sven Heydenreich, Benjamin Brück, Pierre Burger, Joachim Harnois-Déraps, Sandra Unruh, et al.. Persistent homology in cosmic shear. II. A tomographic analysis of DES-Y1. Astronomy and Astrophysics - A&A, 2022, 667, ⟨10.1051/0004-6361/202243868⟩. ⟨insu-03863227⟩
47 View
12 Download

Altmetric

Share

Gmail Facebook X LinkedIn More