Quantifying the tropospheric ozone radiative effect and its temporal evolution in the satellite-era
Résumé
Using state-of-the-art satellite ozone profile products, and chemical transport model, we provide an updated estimate of the tropospheric ozone radiative effect (TO3RE) and observational constraint on its variability over the decade 2008–2017. Previous studies have shown the short-term (i.e. a few years) globally weighted average TO3RE to be 1.17±0.03 W/m2, while our analysis suggests that the long-term (2008–2017) average TO3RE to be 1.21–1.28 W/m2. Over this decade, the modelled/observational TO3RE linear trends show negligible change (i.e. ±0.1 %/year), so the tropospheric ozone radiative contribution to climate has remained stable with time. Two model sensitivity experiments fixing emissions and meteorology to one year (i.e. start year – 2008) show that ozone precursor emissions (meteorological factors) have had limited (substantial) impacts on the long-term tendency of globally weighted average TO3RE. Here, the meteorological variability in the tropical/sub-tropical upper troposphere is dampening any tendency in TO3RE from other factors (e.g. emissions, atmospheric chemistry).
Domaines
Planète et Univers [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |