Overview: Quasi-Lagrangian observations of Arctic air mass transformations -Introduction and initial results of the HALO-(AC) 3 aircraft campaign
Manfred Wendisch
(1)
,
Susanne Crewell
(2)
,
André Ehrlich
(1)
,
Andreas Herber
(3)
,
Benjamin Kirbus
(1)
,
Christof Lüpkes
(3)
,
Mario Mech
(2)
,
Steven J Abel
(4)
,
Elisa F Akansu
(5)
,
Felix Ament
(6)
,
Clémantyne Aubry
(7, 8)
,
Sebastian Becker
(1)
,
Stephan Borrmann
(9, 10)
,
Heiko Bozem
(10)
,
Marlen Brückner
(1)
,
Hans-Christian Clemen
(9)
,
Sandro Dahlke
(3)
,
Georgios Dekoutsidis
(8)
,
Julien Delanoë
(7)
,
Elena De La Torre Castro
(8, 10, 11)
,
Henning Dorff
(6)
,
Regis Dupuy
(12)
,
Oliver Eppers
(9)
,
Florian Ewald
(8)
,
Geet George
(13, 14)
,
Irina V Gorodetskaya
(15)
,
Sarah Grawe
(5)
,
Silke Groß
(8)
,
Jörg Hartmann
(3, 16, 17)
,
Silvia Henning
(5)
,
Lutz Hirsch
(13)
,
Evelyn Jäkel
(1)
,
Philipp Joppe
(9, 10)
,
Olivier Jourdan
(12)
,
Zsofia Jurányi
(3)
,
Michail Karalis
(16, 17)
,
Mona Kellermann
(5)
,
Marcus Klingebiel
(1)
,
Michael Lonardi
(1, 18)
,
Johannes Lucke
(8, 11)
,
Anna Luebke
(1)
,
Maximilian Maahn
(1)
,
Nina Maherndl
(1)
,
Marion Maturilli
(3)
,
Bernhard Mayer
(19)
,
Johanna Mayer
(8)
,
Stephan Mertes
(5)
,
Janosch Michaelis
(3, 20)
,
Michel Michalkov
(5)
,
Guillaume Mioche
(12)
,
Manuel Moser
(8, 10)
,
Hanno Müller
(1)
,
Roel Neggers
(2)
,
Davide Ori
(2)
,
Daria Paul
(2)
,
Fiona Paulus
(2)
,
Christian Pilz
(5)
,
Felix Pithan
(3)
,
Mira Pöhlker
(5)
,
Veronika Pörtge
(19)
,
Maximilian Ringel
(6)
,
Nils Risse
(2)
,
Gregory C Roberts
(21)
,
Sophie Rosenburg
(1)
,
Johannes Röttenbacher
(1)
,
Janna Rückert
(22)
,
Michael Schäfer
(1)
,
Jonas Schaefer
(5)
,
Vera Schemann
(2)
,
Imke Schirmacher
(2)
,
Jörg Schmidt
(1)
,
Sebastian Schmidt
(23)
,
Johannes Schneider
(9)
,
Sabrina Schnitt
(2)
,
Anja Schwarz
(1)
,
Holger Siebert
(5)
,
Harald Sodemann
(24, 25)
,
Tim Sperzel
(1)
,
Gunnar Spreen
(22)
,
Bjorn Stevens
(13)
,
Frank Stratmann
(5)
,
Gunilla Svensson
(16, 17)
,
Christian Tatzelt
(5)
,
Thomas Tuch
(5)
,
Timo Vihma
(26)
,
Christiane Voigt
(8, 10)
,
Lea Volkmer
(19)
,
Andreas Walbröl
(2)
,
Anna Weber
(19)
,
Birgit Wehner
(5)
,
Bruno Wetzel
(5)
,
Martin Wirth
(8)
,
Tobias Zinner
(19)
1
LIM -
Leipziger Institut für Meteorologie
2 IGN - Institut für Geophysik und Meteorologie [Köln]
3 AWI - Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine
4 United Kingdom Met Office [Exeter]
5 TROPOS - Leibniz-Institut für Troposphärenforschung
6 Meteorologisches Institut [Hamburg]
7 SPACE - LATMOS
8 IPA - DLR Institut für Physik der Atmosphäre = DLR Institute of Atmospheric Physics
9 Abteilung für Partikelchemie [Mainz]
10 IPA - Institut für Physik der Atmosphäre [Mainz]
11 Faculty of Aerospace Engineering [Delft]
12 LaMP - Laboratoire de Météorologie Physique
13 MPI-M - Max-Planck-Institut für Meteorologie
14 TU Delft - Delft University of Technology
15 CESAM - Centro de Estudos do Ambiente e do Mar
16 MISU - Department of Meteorology [Stockholm]
17 Bolin Centre for Climate Research
18 EERL - Extreme Environments Research Laboratory
19 MIM - Meteorologisches Institut München
20 DWD - Deutscher Wetterdienst [Hamburg]
21 SIO - UC San Diego - Scripps Institution of Oceanography
22 IUP - Institut für Umweltphysik [Bremen]
23 LASP - Laboratory for Atmospheric and Space Physics [Boulder]
24 GFI / BiU - Geophysical Institute [Bergen]
25 BCCR - Bjerknes Centre for Climate Research
26 FMI - Finnish Meteorological Institute
2 IGN - Institut für Geophysik und Meteorologie [Köln]
3 AWI - Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine
4 United Kingdom Met Office [Exeter]
5 TROPOS - Leibniz-Institut für Troposphärenforschung
6 Meteorologisches Institut [Hamburg]
7 SPACE - LATMOS
8 IPA - DLR Institut für Physik der Atmosphäre = DLR Institute of Atmospheric Physics
9 Abteilung für Partikelchemie [Mainz]
10 IPA - Institut für Physik der Atmosphäre [Mainz]
11 Faculty of Aerospace Engineering [Delft]
12 LaMP - Laboratoire de Météorologie Physique
13 MPI-M - Max-Planck-Institut für Meteorologie
14 TU Delft - Delft University of Technology
15 CESAM - Centro de Estudos do Ambiente e do Mar
16 MISU - Department of Meteorology [Stockholm]
17 Bolin Centre for Climate Research
18 EERL - Extreme Environments Research Laboratory
19 MIM - Meteorologisches Institut München
20 DWD - Deutscher Wetterdienst [Hamburg]
21 SIO - UC San Diego - Scripps Institution of Oceanography
22 IUP - Institut für Umweltphysik [Bremen]
23 LASP - Laboratory for Atmospheric and Space Physics [Boulder]
24 GFI / BiU - Geophysical Institute [Bergen]
25 BCCR - Bjerknes Centre for Climate Research
26 FMI - Finnish Meteorological Institute
Clémantyne Aubry
- Fonction : Auteur
- PersonId : 1421382
- ORCID : 0009-0006-6327-8415
- IdRef : 278530370
Regis Dupuy
- Fonction : Auteur
- PersonId : 20178
- IdHAL : regis-gil-dupuy
- ORCID : 0000-0001-5908-0699
- IdRef : 078005566
Guillaume Mioche
- Fonction : Auteur
- PersonId : 1331440
- ORCID : 0000-0002-1462-5277
Résumé
The global warming is amplified in the Arctic. To collect data that help to constrain weather and climate models, which often do not realistically represent the enhanced Arctic warming, the HALO-(AC)³ aircraft campaign was conducted in March and April 2022 over the Norwegian and Greenland Seas, the Fram Strait, and the central Arctic Ocean. Observations were made over areas of open ocean, the marginal sea ice zone, and the central Arctic sea ice. Two low-flying and one long-range, high-altitude research aircraft have been employed. Whenever possible, the three aircraft were flown in collocated formation. The campaign focused on one specific challenge posed by the models: The reasonable representation of transformations of air masses during their meridional transport into (northward by moist and warm air intrusions, WAIs) and out of (southward via marine cold air outbreaks, CAOs) the Arctic. To observe the air mass transformations, a quasi-Lagrangian flight strategy using trajectory calculations was realized enabling to sample the moving air mass parcels twice along their trajectories. Eight distinct WAI and 12 CAO cases were probed extensively. From the quasi-Lagrangian measurements, we have derived the diabatic heating and moistening of the moving air masses during CAOs and WAIs, the development of cloud macrophysical and microphysical properties along the southward pathways of the air masses during CAOs, and the moisture budget of WAIs. As an example result, we have obtained typical values of the surface-driven diabatic heating between 1–3 K h-1 and of the near-surface moistening between 0.05–0.3 g kg-1 h-1 within the lowest about 0.5 km. From the observations of WAIs, a weak diabatic cooling of up to 0.4 K h-1 and a moisture loss of up to 0.1 g kg-1 h-1 from the ground to about 5 km altitude were derived. In addition, we discuss the frequency of occurrence of the different thermodynamic phases of Arctic low-level clouds, the interaction of Arctic cirrus with sea ice, water vapor, and aerosol particles, and the characteristic microphysical and chemical properties of Arctic aerosol particles. Finally, we provide proof of a concept to measure mesoscale divergence and subsidence in the Arctic using data from dropsondes released during circular flight patterns.
Domaines
ClimatologieOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |