Class Symbolic Regression: Gotta Fit 'Em All - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue The Astrophysical journal letters Année : 2024

Class Symbolic Regression: Gotta Fit 'Em All

Résumé

We introduce "Class Symbolic Regression" (Class SR), the first framework for automatically finding a single analytical functional form that accurately fits multiple data sets—each realization being governed by its own (possibly) unique set of fitting parameters. This hierarchical framework leverages the common constraint that all the members of a single class of physical phenomena follow a common governing law. Our approach extends the capabilities of our earlier Physical Symbolic Optimization (Φ-SO) framework for symbolic regression, which integrates dimensional analysis constraints and deep reinforcement learning for unsupervised symbolic analytical function discovery from data. Additionally, we introduce the first Class SR benchmark, comprising a series of synthetic physical challenges specifically designed to evaluate such algorithms. We demonstrate the efficacy of our novel approach by applying it to these benchmark challenges and showcase its practical utility for astrophysics by successfully extracting an analytic galaxy potential from a set of simulated orbits approximating stellar streams.
Fichier principal
Vignette du fichier
Tenachi_2024_ApJL_969_L26.pdf (718.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

insu-04651095 , version 1 (17-07-2024)

Licence

Identifiants

Citer

Wassim Tenachi, Rodrigo Ibata, Thibaut L. François, Foivos I. Diakogiannis. Class Symbolic Regression: Gotta Fit 'Em All. The Astrophysical journal letters, 2024, 969, ⟨10.3847/2041-8213/ad5970⟩. ⟨insu-04651095⟩
17 Consultations
14 Téléchargements

Altmetric

Partager

More