Multimodel regional frequency analysis of CMIP extreme precipitation - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue Environmental Research: Climate Année : 2024

Multimodel regional frequency analysis of CMIP extreme precipitation

Résumé

A recurrent question in climate risk analysis is determining how climate change will affect heavy precipitation patterns. Dividing the globe into homogeneous sub-regions should improve the modeling of heavy precipitation by inferring common regional distributional parameters. In addition, biases due to model errors in global climate models (GCMs) should be considered to understand the climate response to different forcing effects. Within this context, we propose an efficient clustering algorithm that, compared to classical regional frequency analysis (RFA) techniques, is covariate-free and accounts for dependence. It is based on a new non-parametric dissimilarity that combines both the RFA constraint and the pairwise dependence. We derive asymptotic properties of our dissimilarity estimator, and we interpret it for generalized extreme value distributed pairs. As an application, we cluster annual daily precipitation maxima of 16 GCMs from the coupled model intercomparison project. We combine the climatologically consistent subregions identified for all GCMs. This improves the spatial clusters coherence and outperforms methods either based on margins or on dependence. Finally, by comparing the natural forcings partition with the one with all forcings, we assess the impact of anthropogenic forcing on precipitation extreme patterns.
Fichier principal
Vignette du fichier
Le_Gall_2024_Environ._Res.__Climate_3_045013.pdf (2.95 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-04783278 , version 1 (14-11-2024)

Licence

Identifiants

Citer

P. Le Gall, A. C. Favre, A. Tuel, P. Naveau. Multimodel regional frequency analysis of CMIP extreme precipitation. Environmental Research: Climate, 2024, 3, ⟨10.1088/2752-5295/ad7d2a⟩. ⟨insu-04783278⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More