Journal Articles Journal of Geodesy Year : 2024

Assessment of length-of-day and universal time predictions based on the results of the Second Earth Orientation Parameters Prediction Comparison Campaign

Justyna Śliwińska-Bronowicz
  • Function : Author
Tomasz Kur
  • Function : Author
Małgorzata Wińska
  • Function : Author
Henryk Dobslaw
  • Function : Author
Jolanta Nastula
  • Function : Author
Aleksander Partyka
  • Function : Author
Santiago Belda
  • Function : Author
Dale Boggs
  • Function : Author
Sara Bruni
  • Function : Author
Lue Chen
  • Function : Author
Mike Chin
  • Function : Author
Sujata Dhar
  • Function : Author
Robert Dill
  • Function : Author
Jose Manuel Ferrandiz
  • Function : Author
Junyang Gou
  • Function : Author
Richard Gross
  • Function : Author
Sonia Guessoum
  • Function : Author
Songtao Han
  • Function : Author
Robert Heinkelmann
  • Function : Author
Christopher Irrgang
  • Function : Author
Mostafa Kiani Shahvandi
  • Function : Author
Jia Li
  • Function : Author
Marcin Ligas
  • Function : Author
Lintao Liu
  • Function : Author
Weitao Lu
  • Function : Author
Volker Mayer
  • Function : Author
Maciej Michalczak
  • Function : Author
Sadegh Modiri
  • Function : Author
Michiel Otten
  • Function : Author
Todd Ratcliff
  • Function : Author
Shrishail Raut
  • Function : Author
Jan Saynisch-Wagner
  • Function : Author
Matthias Schartner
  • Function : Author
Erik Schoenemann
  • Function : Author
Harald Schuh
  • Function : Author
Benedikt Soja
  • Function : Author
Xiaoqing Su
  • Function : Author
Daniela Thaller
  • Function : Author
Maik Thomas
  • Function : Author
Guocheng Wang
  • Function : Author
Yuanwei Wu
  • Function : Author
Xueqing Xu
  • Function : Author
Xinyu Yang
  • Function : Author
Xin Zhao
  • Function : Author
Zhijin Zhou
  • Function : Author

Abstract

Predicting Earth Orientation Parameters (EOP) is crucial for precise positioning and navigation both on the Earth's surface and in space. In recent years, many approaches have been developed to forecast EOP, incorporating observed EOP as well as information on the effective angular momentum (EAM) derived from numerical models of the atmosphere, oceans, and land-surface dynamics. The Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) aimed to comprehensively evaluate EOP forecasts from many international participants and identify the most promising prediction methodologies. This paper presents the validation results of predictions for universal time and length-of-day variations submitted during the 2nd EOP PCC, providing an assessment of their accuracy and reliability. We conduct a detailed evaluation of all valid forecasts using the IERS 14 C04 solution provided by the International Earth Rotation and Reference Systems Service (IERS) as a reference and mean absolute error as the quality measure. Our analysis demonstrates that approaches based on machine learning or the combination of least squares and autoregression, with the use of EAM information as an additional input, provide the highest prediction accuracy for both investigated parameters. Utilizing precise EAM data and forecasts emerges as a pivotal factor in enhancing forecasting accuracy. Although several methods show some potential to outperform the IERS forecasts, the current standard predictions disseminated by IERS are highly reliable and can be fully recommended for operational purposes.
Fichier principal
Vignette du fichier
s00190-024-01824-7.pdf (9.09 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

insu-04858857 , version 1 (30-12-2024)

Licence

Identifiers

Cite

Justyna Śliwińska-Bronowicz, Tomasz Kur, Małgorzata Wińska, Henryk Dobslaw, Jolanta Nastula, et al.. Assessment of length-of-day and universal time predictions based on the results of the Second Earth Orientation Parameters Prediction Comparison Campaign. Journal of Geodesy, 2024, 98, ⟨10.1007/s00190-024-01824-7⟩. ⟨insu-04858857⟩
32 View
2 Download

Altmetric

Share

More